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Abstract. The exceptional sets in the autonomous and periodic K A M  theorems consist of 
sets of near-resonant frequencies ( w , ,  . . . , w , )  = w for which the method of proof of the 
theorems breaks down. They are residual and of measure 0. In this paper their Hausdorff 
dimension is deduced from that of a related set of well approximable linear forms. The 
Hausdortl dimension of these linear forms is a special case of a more general number 
theoretic result on systems of linear forms established recently but a self-contained proof 
is given. The proof relies on the resonant hyperplanes being reasonably well distributed. 
A fairly general statistical ‘second moment’ argument is used but some geometrical ideas 
are introduced to simplify and improve the original proof. When the number of degrees 
of freedom is large, the Hausdorff dimension is nearly maximal, so that, although of 
measure 0, the exceptional sets are, roughly speaking, close to sets of positive Lebesgue 
measure. The implications for the stability of Hamiltonian systems with many degrees of 
freedom and for the onset of certain kinds of instability are discussed briefly. 

1. Introduction 

One of the oldest problems in mechanics has been to understand the behaviour of 
solutions for the motions of N bodies subject to Newtonian attraction. A case of 
particular importance is the Solar System, in which one of the masses mN (the Sun) 
is much larger than the masses m,, j = 1, . . . , N - 1, of the other bodies (the planets), 
so that the mass ratios m l / m ,  are small. If, as a first approximation, the centre of 
mass of the system is supposed to coincide with the Sun and any interactions between 
the planets are ignored, then the system decouples into N - 1 equations, whose solutions 
may be chosen to be elliptical orbits about the Sun with frequencies w,,j  = 1, . . . , N - 1. 
Such a solution for the whole system is said to be quasi-periodic. It is then of interest 
to know whether such solutions still exist (for small enough m l / m N )  when the interac- 
tions are taken into account. A formal proof of the existence of such quasi-periodic 
solutions was known to Weierstrass (see Moser 1973, ch 1, 0 2) who was able to 
construct series solutions but, owing to the presence of small divisors, was unable to 
establish their convergence. Indeed it appears that, because of doubts about the 
convergence of his series expansions, PoincarC suspected that quasi-periodic solutions 
did not exist (see Moser 1973, ch 1, 0 2). The problem was not answered satisfactorily 
until 1962, when Arnol’d not only established in the Kolmogorov-Arnol’d-Moser 
( KAM) theorem the existence of quasi-periodic solutions for the more general problem 
of a perturbed integrable Hamiltonian system but also showed that the set of such 
solutions forms a complicated Cantor-type set of positive Lebesgue measure (see Moser 
1973, p 8). This implied that for planets of sufficiently small mass compared to the 
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Sun and for the majority of initial conditions under which the instantaneous orbits 
are close to coplanar circles, the perturbations of the planets on each other cause little 
change over all time. It follows that there is a set of initial conditions, which has 
positive Lebesgue measure, such that the distances of the bodies from each other will 
remain perpetually bounded if the initial conditions belong to this set (Arnol’d 1963, 
p 125). 

The magnitude of a permissible perturbation of the system depends upon how 
closely integer linear forms in the frequencies approach 0 or how nearly the frequencies 
are rationally dependent or resonant. When the frequencies are very close to being 
resonant, problems associated with so-called ‘small divisors’ arise and the method used 
to deduce the existence of quasi-periodic solutions fails. To avoid these problems, a 
Diophantine approximation condition, which controls the closeness to resonance and 
which is purely number theoretic in character, is imposed on the frequencies. This 
condition, which is governed by an exponent T, holds almost everywhere for suitable 
T and frequencies which do not satisfy this condition, i.e. which are very close to being 
resonant, form an exceptional set of Lebesgue measure 0. In the case of these 
frequencies, the presence of small divisors prevents convergence in an extension of 
Newton’s tangent method, which lies at the heart of the KAM theorem, being established. 
By considering the KAM theorem in the setting of the infinite dimensional group of 
canonical transformations acting on the infinite dimensional manifold of Hamiltonian 
vector fields, the Diophantine approximation condition emerges as the natural require- 
ment for the application of an infinite dimensional implicit function theorem (see 
Vickers and Dodson (1985) for more details). 

However, even when a set of frequencies satisfies the Diophantine approximation 
condition, so that when perturbed the corresponding system still has quasi-periodic 
solutions, the permissible perturbations for certain frequencies are so small that they 
are physically meaningless. Hence to prevent the perturbation of the Hamiltonian 
system having to be very small (or to ensure a reasonably ‘robust’ stability), the 
exponent T is fixed at a convenient value for which the Diophantine approximation 
condition holds for almost all frequencies, so that the complementary set of frequencies 
not satisfying the condition is of measure 0 and so may be neglected. 

In this paper, the complementary set and related exceptional sets, including the 
corresponding sets in the periodic KAM theorem, are studied and their Hausdorff 
dimensions determined. The Hausdorff dimension of the exceptional sets associated 
with the (autonomous) KAM theorem is obtained from that of the corresponding sets 
in the periodic KAM theorem. The dimension in the periodic case is determined using 
fairly general geometrical and statistical arguments which rely on the resonant hyper- 
planes being reasonably well distributed. It turns out that the cost of excluding 
frequencies for which the permissible perturbations are very small is that the com- 
plementary exceptional sets are relatively large and that their Hausdorff dimensions 
are almost maximal when there are many degrees of freedom. This means that, even 
though the exceptional sets are of Lebesgue measure zero, they are close to sets of 
positive Lebesgue measure. 

The rest of this paper is organised as follows: in § 2 the proof of the autonomous 
KAM theorem is sketched to indicate how the number theoretic conditions emerge and 
the corresponding exceptional sets E and E (  T )  are explained. In 0 3 the corresponding 
conditions and exceptional sets ,?? and ,??(r) yhich arise in the periodic KAM theorem 
are set out. In § 4, well approximable forms W ( T )  and W ( T )  are introduced and their 
relationship with the exceptional sets established. The Hausdorff dimension dim X of 
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a set X in R" is explained in 0 5 and upward inequalities for dim W (  7) and dim 6'( 7) 

obtained in § 6 and 0 7 ,  respectively. The main and most difficult part of the paper is 
5 8 where dim k(7) is determined. The dimension of W ( T )  is deduced in § 9 and 
dim ( T) and dim E ( T) obtained in 0 10. 

2. The Kolmogorov-Arool'd-Moser theorem 

A Hamiltonian system 

xk = d H / a y k  ) j k  = -dH/dxk k =  1, . .  . , n (2.1) 

is called integrable if coordinates q l ,  . . . , qn, p l ,  . . . , pn can be introduced via an 
(invertible) canonical transformation 

(4 Y )  = W(q,  P) 
where W has period 277 in the q,, such that the Hamiltonian H = H (  p )  is independent 
of q. Such coordinates are called action and angle variables and imply the existence 
of a global solution to the Hamilton-Jacobi equations. In these coordinates, Hamilton's 
equations take the form 

qk = a H / a q k  P k  s o ,  k =  1, .  . . , 
and have the general solution 

We now consider a perturbation of the integrable system H: T" xR"  + R  ( T "  is 
the n-dimensional torus { ( z l , .  . . , 2,) E C":  / z l /  = .  . . = Iz,, = 1)) given by 

H ' ( q , p ;  P )  = H o ( p ) + P H 1 ( q , p ) + O ( P 2 )  ( 2 . 2 )  
where p is a small parameter and where H' is assumed to be analytic in 2n + 1 variables, 
with period 27r in the qi. Thus for p = 0 the 2n-dimensional phase space is foliated 
into an n-parameter family of tori 

P k (  t )  = ck = constant k =  1,. . . , n 

or p( t )  = c, on which the flow is given by 

By (2.2), H'(q ,  p ;  0 )  = H o ( p ) .  It turns out that in order to investigate orbits which 
persist under small perturbations (or to prove the KAM theorem), it is not necessary 
to consider a general Hamiltonian Ho( p )  but it suffices to consider Hamiltonians which 
are at most quadratic in the pz and satisfy 

n 

aHO/apj = + ajkpk 
k = l  

for some invertible symmetric matrix (a,,') (see Moser 1973, p 115). If we are given 
such a Hamiltonian Ho and we are able to introduce new canonical coordinates q', p' 
so that Hamilton's equations become 
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where 

aH'/ap; = w , + z  b , Q ; f O ( p ' * )  
k 

(b,k = b k , )  and aH'/aq; = o( p " ) ,  then a solution to Hamilton's equation's for H' with 
initial conditions p : ( O )  = 0 is provided by 

q : (o=w] t+q : (O)  p;(t)=O, k = l ,  . . . ,  n. 

In terms of the original coordinates q, p ,  this gives rise to a quasi-periodic solution 

( q ( t ) , p ( t ) )  = w'(of+q'(0) ,0)  

of the original equations. 

vector field 
Since H' is of period 257 in the q,, H' can be regarded as defining a Hamiltonian 

m=L------- aH' a aH' a 
1 = 1  aP, a% a91 JP, 

on D = T" x P, where P is an open domain in R". Being able to find coordinates p '  
and q' is equivalent to showing that for an element m in the space M of real analytic 
Hamiltonian vector fields on D sufficiently near the vector field 

there exists an element g = g ( m )  in G, the (local) group of real analytic homogeneous 
canonical transformations on D, such that 

( g * - ' o  m o g ) , = ( m * ) , + d ,  (2.3) 

where 

I d = x x C J k P k a / a q J :  c ] k = c k J  { I k  

and ( denotes linearisation with respect to the p variables, i.e. 

Let MI be the set of p-linearised Hamiltonian vector fields. Then we can define an 
action G x MI + MI by 

( g ,  m ) + g .  m = ( g * - l o m o g ) , .  

The KAM theorem follows when (2.3) can be solved. The group action g .  m induces 
a map 4 : 2+ GI, given by 

4 : x + (L ,m*) ,  

where 3 is the Lie algebra of G, GI = T,-M, and L,m* is the Lie derivative. Note 
that since the vector field is linearised with respect to the p variables, it is enough to 
consider those elements of 2 which are linear in p .  The linearised version of (2.3) is 

4 ( x ) + d o = ( L , m * ) , + d , =  mI (2.4) 
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where x E 2 and m ,  E 16,. By considering the coefficients of the components of the 
vector m ,  and splitting them up into terms independent of p or linear in p ,  (2.4) gives 
a system of independent scalar equations, each of the form 

a u = C w k a u / a q k = f ( q )  (2.5) 
k 

wherefis 2r-periodic in q and has constant term 0. It can be verified that the functions 
e (  j ) ,  j E Z", where e(  j ) ( q )  = e x p ( 2 ~ i j .  q ) ,  form a complete set of eigenfunctions for 
a with eigenvalues o * j .  When expanded in terms of these eigenfunctions, the Fourier 
series for f is 

f = f je ( j )  
j f O  

and we can solve (2.5) with 

For the solution (2.6) to exist, o j cannot vanish for non-zero j .  But for any o, the 
denominator w j can be arbitrarily small for certain j and this problem of 'small 
divisors' makes convergence problematic, despite the exponential convergence to zero 
of the Fourier coefficients J;.. 

One method of solving (2.3) is to use an iterative method based on Newton's 
tangent method and which involves repeatedly solving (2.4) (for more details see 
Arnol'd 1963, Moser 1973, Sternberg 1969, Vickers and Dodson 1985, Zehnder 1977). 
This method can be shown to converge and the KAM theorem established if the map 
r j  satisfies a condition known as finite order (see Arnol'd 1968, p 27, Arnol'd 1981). 
It can be shown that if for some real T and positive C, o = (co l , .  . . , w,) satisfies the 
purely arithmetical condition 

1 0 .  jla C/j l ; '  (2.7) 

where IjI, = /jll+. . .+ l jnI,  for all non-zeroj in Z", then q5 is of finite order. Moreover 
this condition guarantees the convergence of the series (2.6) and so guarantees (under 
a natural non-degeneracy requirement) the KAM theorem. Indeed the full statement 
of the KAM theorem is as follows (see Moser 1973, p 44). 

Let Y be an open set in R" and let H'(q, p ,  p )  be a real analytic function of q, p 
and p for all q, p in R" and all p near 0. Suppose H has period 2 7  in q,, . . . , qn and 
that Ho = H(q,  p ,  0) is independent of q (so that Ho(q, p )  = H o ( p ) ) .  Let c in R" be 
chosen so that the frequencies wlr . . . , w ,  given by 

w k  = aHo(c)/dpk k =  1,. . . , n (2.8) 

satisfy (2.7) for some T and positive C and all non-zero j in Z", and so that the Hessian 

det(dw,/dp,) = det(a2Ho/ap, ap,) (2.9) 

does not vanish at p = c. 

invariant torus 
Then there exists a positive po such that, for all p with Ipl<po, there exists an 

4 = @ + 4 @ , c L )  P =  C + O ( @ , P )  (2.10) 
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where ui( 8, p )  and vi( e, p )  are real analytic functions of p and 8 = (6, .  . . , On), have 
period 277- in e,, . . . , On and vanish for p = 0. Moreover the flow on this torus is given 
by 

6, = W k  1 S k S n .  

This equation defines a subsystem of the system given by (2.2) and (2.10) defines the 
embedding of the torus. 

Since the arithmetic condition (2.7) holds for almost all w in R", the KAM theorem 
holds for almost all w. Note that po depends on the exponent T in (2.7); the smaller 
7, the bigger the perturbation p can be (Russman (1973) contains estimates connected 
with this question). Physically only perturbations which are not too small and corre- 
spond to 'robust' stability are of interest. If T can be arbitrarily large, as is permitted 
in the mathematical definitioi,, the allowable perturbations can become arbitrarily 
small and the stability can be considered as delicate. 

We are going to study the set R of points w in R" for which (2.7) holds,.i.e. the 
set of frequencies for which the KAM theorems can be proved, and its complement, 
the set of frequencies for which the proof fails. To do this, it is convenient to introduce 
the auxiliary 7-stability set: 

R ( T )  = {x E R": for some c > 0, )q  - x) 3 Clq1TT for all non-zero q E Z"} 

so that R(  7') 2 R( T )  when T' 5 T and R = UreR R( T ) .  

It follows from a Dirichlet box argument that Cl( T )  is empty when 7 < n - 1 and it 
can be shown that IR( n - 1)1= 0 (and incidentally that the Hausdorff dimension of 
R(  n - 1) is n )  and that In( 7)1 = 1 when T > n - 1 (Amol'd 1963, Schmidt 1980, Russman 
1973). Hence without loss of generality the union may be taken over all T 3 n - 1, and 
R has Lebesgue measure /RI = 1. It follows that, provided H' is sufficiently near H,, 
then almost all frequencies give rise to quasi-periodic solutions. It is worth repeating 
that the size of the allowable perturbation H I -  Ho depends upon the size of the 
ezponent 7; the larger 7, the smaller the allowable perturbation. In order to study this 
aspect of the theory, we study the complements E(T)=R"\R(T)  of the constituent 
7-stability sets R(T), i.e. we study the sets 

E ( T )  = {x E R": for each C > 0, l j .  XI < C /  jl;' for some non-zero j E Z", 1 c k s  n }  

for which the inequality (2.3) does not hold. Clearly E ( ~ ' ) G  E ( T )  when 7'2 T and 
from the above when 7 < n - 1, E (  T )  = R", IE ( n  - 1)1= 1 and when T > n - 1, I E (  T ) ]  = 0. 
Clearly the set 

E = n ~ ( 7 )  = R"\R 
I 

has Lebesgue measure 0 and so E and the sets E ( 7 )  when T >  n - 1 will be called 
exceptional. Note however that since the constant C in the definition of E ( 7 )  can, 
without loss of generality, be taken to be a positive rational, it follows that 

j # O  

whence E ( T )  is the countable intersection of open dense sets (containing Q") and so 
is residual. Similarly since 

n 
E = lim n E ( j )  

n - c o  J = 1  
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E is a residual set, so that their respective complements R( T )  and R are meagre, even 
though SZ and R(T)  when T >  n - 1 have full measure. Note also that E and E ( T )  are 
G8 sets whence SZ and R(T)  are F, sets. 

Note that since the norm I I I  and the supremum norm I I on R" given by 

101 =max{lu,l, * .  . , lu,l) ( = / V I , )  

are equivalent, both norms can be used in the definition of 0, R(T) and E ( T ) ;  thus 

E ( T ) = ( X E R " :  for each C>O, / j . w l <  CIjl-' for some j ~ Z " \ { 0 } } .  (2.11) 

3. The periodic KAM theorem 

A closely related version of the autonomous KAM theorem just discussed deals with 
the perturbation of a Hamiltonian of the form Ho(p,  t )  which has period 257 in the 
time variable t .  In the periodic KAM theorem, a real analytic Hamiltonian H : T"+' x 
R" + R is perturbed to the Hamiltonian 

H ' ( q , p ,  t ;  CL)= HcdP, f)+CLH,(%P, t)+O(CL2) 

which is real analytic in the 2 n  + 2  variables and has period 27r in qz and t. The theorem 
asserts that, given some point c in P for which the point w = ( w , ,  . . . , w , )  (where the 
wk are given by (2.8) with the Hessian (2.9) not vanishing) satisfies the stronger 
condition that for some real T and positive C, 

~ j ~ w - m ~ ~ C ~ j ~ ~ T  (3.1) 

for all m E Z and non-zero j E Z", then there exists a corresponding quasi-periodic 
solution to the original equations. Write 

A ( ~ ) = { X E R ~ :  forsome C > O ,  l j * x - m l z  c \ ~ ~ L ~ , ~ E z ~ \ { o I ,  m E Z }  

= { X E  R":  for some c > 0, l j .  x-  m 1 a  ~ l j I - ' , j ~  z"\{o}, m E Z} 
A A 

so that if the vector w of frequencies w l , .  . . , w ,  lies in R = ';J R( T ) ,  where the union 
is over all real T, a quasi-periodic solution exists. Note that R(7') c h(7) whenA7'z T. 

Again it can be shown by using a Dirichlet box argument that when T <  n, R(T)  is 
empty and it can also be shown that Ih('n)i = 0 and that lh (~) l=  1 when r> n (Arnol'd 
1963, Schmidt 1980, Sprindiuk 1979). Thus (3.1) never holds when T <  n, holds for a 
set of measure 0 when T = n (incidentally the Hausdorff dimension dim h ( n )  = n 
(Schmidt 1980)) and for a set of full measure otherwise; and thus ftl= 1. 

The exceptional set 8 ( ~ )  = R " \ ~ ( T )  of frequencies w for which (3.1) does not hold 
for the exponent T, so that the periodic KAM theorem cannot be deduced, is of the form 

l ? ( ~ )  = { X E  R": for each C > 0, l j -  x -  ml< CljIyT for somejE Z"\{O}, m E Z} 

= {x E Z": for each C > 0, [ ( j .  x) [<  Cljl-T for somejE Z"\{O}} (3.2) 

where (U) is the unique number U - m, m E Z, in (-i, i]; thus 

I(u)l= IIuII =inf{lu-ml: m E Z }  

the distance of U from the integer nearest to U. 
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Because E ( T ) = R ~ \ R ( T ) ,  when ~ < n ,  & ( T ) = R " ,  I & ( n ) I = l  and when T > # ,  

[k(~)l=O. As with E ( T )  and E,  

If0 

are residual, so that their respective complements 8( T )  and 8 :re meagre, even though 
A and A ( T )  when T >  n have full measure. Note also that E and E ( T )  are Gs sets 
whence 8 and 8 ( ~ )  are F, sets. For large 7, vectors x in g(7) have coordinates 
xi,. . . , x, which are close to being integrally and hence rationally dependent with 1. 
The exceptional sets ,??( T )  are closely related to sets of well approximable linear forms, 
as we shall see in the next section. 

4. Exceptional sets and well approximable forms 

The set of real linear forms 5 x = Xy= 5JxJ satisfying 

l(4 * x)l = 114 * XI/  < 1 4 r  

+ ( T I  = {x E R": ) ( q  * x)) < 

for infinitely many q in Z" will be written 

for infinitely many q E z"> (4.1) 

i.e. the form 5 -  x is identified with the vector x in R". If a vector x = ( x l , .  . . , x,) is 
in + ( T ) ,  T >  n, the numbers xl, . . . , x,, 1 :re close to being integrally (and hence 
rationally) dependent or resonant. The set W( T )  deppds  on n2nd when it is desirable 
to make this dependence explicit, y e  shall write W ( T )  as W(T,  n). When T < n, it 
follows from a box argument that W( T )  = R". Since 

when T S  n 
when T >  n c 141-'( z: 

where the sum is over all non-zero q in Z", it follows from Groshev'sgeneralis$on 
of Khintchine's theorem (Sprindiuk 1979) that the Lebesgue measure 1 W (  n)l of W( n) 
is 1 and that when T >  n, I ~ ( T ) )  = O  (see also Schmidt 1980). The set G(T)  and the 
exceptional set E (  7) given by (3.2) and associated with the periodic KAM theorem are 
evidently closely related and both involve the linear form (5- x). 

In the same way the exceptional set E ( T )  given by (2.11) and associated with the 
autonomous KAM theorem is also evidently closely related to the set W ( T )  of linear 
forms 5 - x which satisfy 

14' XI < I 4 r T  (4.2) 

for infinitely many q in Z", i.e. again identifying the form 5 : .  x with x, E ( 7 )  is closely 
related to the set 

W ( T )  = {x E R": ( 4 -  X I  < IqI-' for infinitely many q in z"}. (4.3) 

As with W ( T ) ,  when the dependence on n needs to be made explicit, we will write 

Although not equal to the sets of linear forms, the exceptional sets are included 
w( T )  = w( T, n). 

in the corresponding sets and contain slightly smaller versions of them. 
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Lemma 4.1.  For each positive E ,  

Proof: Let x E R"\ @( T +  E ) ,  so that for all but finitely many q in Z", q,, . . . , qm say, 
1(q x ) l 3  IqI-: The constant K = K ( x )  given by 

K = max{/(q, x)/ * lqr1-': r = 1, . . . , m} 
is positive since if (qo, x) = 0, then (rqo, x) = 0 for each integer r, so that ( q  x) = 0 has 
infinitely many solutions in Z". It follows that for all non-zero q in Z" 

l(4'  x)l> ( K / 2 ) / q / - '  

so that X E R " \ I ? ( T ) = ~ ( T T ) ,  whence E ( T ) c  @ ( T ) .  

Next let x E @ ( T +  E ) ,  so that there exists an  infinite sequence {qr  E Z": r = 1 , 2 ,  . . . } 
satisfying l ( q r - x ) I < l q r / - T - E .  Let C be any positive constant and choose r such that 
lqrl-" < C. Then 

/ ( q r * x ) < I q r I - T - E <  ClqrI-' 

whence X E  E ( 7 )  and @ ( T + E ) c  E ( T ) ,  

to hold for W ( T )  and E ( T ) .  
Since q * x = 0 implies that rq * x = 0 for each integer r, the result can also be shown 

Because of the close relationship between the linear forms (8 .  x) and 5 .  x, the set 
~ ( ~ , n ) n { x ~ I " : a < x , < 1 } ,  where I=(-i,f], can be mapped into ( $ , f ) X  
( W ( T -  E, n - 1) n In- ')  by a function T which satisfies a Lipschitz condition (so that 
the Hausdorff dimension of the domain of T is greater than that of the image, a fact 
which will be used in 09). yoreover  for each positive E ,  T(W(7 ,  n ) n  
{ X E  I " :  $ < x ,  <$}) contains ( a , ; )  X (  W ( T + E ,  n - 1)n I " - ' ) .  

Lemma 4.2. For each E > 0 and  n 3 2 the function T :  ($, f )  x In-' + R" given by 

T ( x )  = n x , ,  x2 , .  . . , X " )  = ( X I ,  X , / X I , .  . * , X " / X , )  

sends W (  T,  n )  n {x E I " :  $< x l  < i} into (i, i) x ( @( T - E ,  n - 1 )  n I"-'), the image 
T(  W (  T,  n ) n { x E I "  : $ < x l  < f}) contains (a, f )  x ( @( 7 + E, n - 1 )  n I " - I )  and T satisfies 
~ T ( x ) -  T ( x ' ) ~ s  161x-x'l. 

Proof: For each x in W(7, n )  n { x E  I " :  a < x ,  <f}, there are infinitely many q in Z" 
such that / q l x l  + q 2 x 2 + .  . .+ q,x,I < 1q/-', and so infinitely many q such that lql+ 
q 2 x 2 / x I  C .  . . + q , x , / x l /  < 4/ql-' < q-'+', where q = max{lq,l: 2 d i d n} > 4"". Hence, by 
definition, 

~ ( x ) = ( x , , x ~ / x ,  , . . . ,  x , / ~ ~ ) ~ ( $ , f ) x @ ( ~ - - , n - l ) n ~ ~ .  
Also for each y = (yl, . . . , y n )  in the subset (a, 1) x ( @( 7- E, n - 1 )  n I " ) ,  the point 
(yl, y l y 2 , .  . . , y l y , )  is mapped by T to y and is contained in the set W(T,  n )  n 
{ X E  I " :  !< x l  <+} since there are infinitely many ( q 2 , .  . . , q n )  in Z"-' and q, in Z such 
that lql + q 2 y 2 + .  . . + q"y.1 < q-'-" and so 

141y,+q2YIY2+...+qlylynl<fq-r-E. 

But lqll < ( n  - l ) q / 2 + f ,  whence 141 = max{lq,l, q }  < nq and so 

I q l + q 2 ~ 2 + .  . . + q ~ n I < n T + E l q / - T - E < l q l - r  
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for infinitely many q (141 > ( r ~ ' " ) ' ' ~ )  in Z". Thus 

T (  w( 7, TI) f-7 {X E 1": a < XI < i}) 3 ($, f) x ( @( T -k E ,  n - 1) n In- ' )  

and by considering components, it is readily verified that for each x, x' in (a, i) x In-', 

It can also be shown that the set (0, f) x ( @ ( T +  E ,  n - 1) n I"-') can be embedded 
analytically into W( T, n )  for any positive E ;  such embeddings preserve the Hausdorff 
dimension. 

~ T ( X ) -  T ( x ' ) ~ s  161x-x'I. 

5. The Hausdorff dimension of the exceptional sets 

As has been said, when T is large enough each of the sets 6 ( ~ )  and n ( ~ )  discussed 
above is of Lebesgue measure 1, so that the measure of each of the corresponding 
complementary exceptional sets E ( T )  and E ( T )  is 0. But although the exceptional 
sets can thus be regarded as thin or negligible, sets of measure 0 can be very different. 
The Hausdorff dimension (which, when there is no risk of confusion, will be referred 
to for convenience simply as the dimension and which will be explained below) provides 
more information about the size of a set of measure 0 and can distinguish between 
many such sets. For example, both the uncountable (perfect) Cantor middle third set 
and the countable (dense) set of rationals in [0,1] have Lebesgue measure 0 but their 
respective dimensions are (log 2)/(log 3) and 0 (Falconer 1985). On the other hand, 
different sets can have the same dimension and, for example, the set 
W((1og 9/log 2) - 1 , l )  also has dimension 2 / ( ~ +  1) = (log 2)/(log 3) (Jarnik 1929, 
Besicovitch 1934). Indeed, although Ifi( n)l = 0 and IS( n)l = 1 (Amol'd 1963, Sprindiuk 
1979), it can be shown that h(n) and E (  n) both have Hausdorfl dimension n (Schmidt 
1969, Riissman 1973). Hausdorfl dimension (which is also referred to as Hausdorfl- 
Besicovitch or fractional dimension) is a generalisation of the familiar notion of 
dimension but with the fundamental difference that any subset of R" can be assigned 
a Hausdorfl dimension. The price of this generality is a somewhat complicated 
definition (Rogers 1970, Falconer 1985) but the Hausdorfl dimension does give an 
indication of the size of a set. A set with Hausdorfl dimension close to n will, roughly 
speaking, be close to a set of positive Lebesgue measure. 

The Hausdorff dimension of a set X in R" will be denoted by dim X and can be 
defined as follows. Let p be any positive number and let r p  be any finite or countable 
cover of X by n-dimensional hypercubes C, where the length L ( C )  of a side of each 
hypercube is at most p. For each real number s define the s volume to be 

Ls(rp)= ~ ( c ) " .  
cero 

Clearly inf L'(r , ) ,  where the infimum is taken over all covers r p  of X ,  cannot increase 
as p decreases, and if S ' Z  s, then 

inf Ls'(r,) s p s  -' inf q r , ) .  
Thus if s'> s and sup inf Ls((T,) is finite, where the supremum is over all positive p, 
then sup inf Ls'(T,) = 0. The Hausdorfl dimension dim X of X is the supremum over 
all real s for which sup inf L'(T,) is positive, i.e. 

s E R: sup inf Ls((Tp) > 0 . 
p > o  r P  I 



Exceptional sets in K A M  theory 359 

It follows that if X can be covered by a collection rp  with arbitrarily small s volume 
Ls((T,), then dim X S s. On the other hand, if for each positive E, there exists a positive 
number p = p ( s )  such that every cover r p  of X with L ( C ) s p  satisfies L"(T,)> E, 

then dim X 2 s. Roughly speaking, if the s volume of covers consisting of small 
hypercubes of X is large, then dim X 2 s. An equivalent condition is that if there 
exists a positive E such that for any positive p, collections r p  satisfying L'(T,) < E 

cannot cover X ,  then dim X > s. In other words, if collections of small hypercubes 
and small s volume cannot cover X ,  then dim X > s. 

Clearly a cover r of X will be a cover for any subset X '  of X and it follows from 
the definition that if X ' c  X c R", then 

dim X ' S  dim X s n. (5.1) 
The determination of the dimension can often be simplified by the observation that when 

io 

x = u x ,  
J = 1  

then 

dim X = sup {dim X,: j = 1,2, . . . }. 

6. dim W ( 7 )  < n - ( T - n + 1 ) / ( ~  + 1) 

To illustrate these ideas we shall show that n - ( ~ - n +  1 ) / ( ~ + 1 )  is an upper bound 
for the Hausdorff dimension of W ( T )  when T >  n - 1. It is readily verified that 
W( T,  1) = {0} when T > 0, so that from now on n 2 2 unless otherwise stated. Since R" 
is the union over all q in Z" of hypercubes I "  + 4, it suffices to determine the dimension 
of W (  T )  n I" .  

To obtain the upper bound for dim W (  T ) ,  we construct a cover (T for W (  T )  n I "  
of hypercubes C such that for each s > n - (7 - n + 1 ) / ( ~ +  l),  the s volume L s ( r )  can 
be made arbitrarily small, whence inf Ls((T)=O, so that by definition and (4.2), 
dim W( T )  s n - ( T - n + I ) / (  T +  1). 

For each q in Z", write 

H ( q )  = { X E  I " :  j q * x (  =O} 

U ( q )  = { X €  I " :  (4' XI < (ql-T} 

so that H ( 4 )  is a resonant hyperplane (Arnol'd 1979) and let 

be a neighbourhood of H ( q ) .  Then for each positive integer N, { U ( q ) :  141 2 N }  is a 
cover for W ( T )  n I".  But each U ( q )  has a cover r(q) consisting of at most K14(("-')('+l) 
n-dimensional hypercubes C with L( C) = 81ql-(T+1), where K is a constant (see figure 
1). Hence for each N, W ( 7 ) n I "  is covered by the collection r N  = 
{r(q): q E Z", IqI 2 N } ,  in which L ( C )  b 8N-"+" , so that given any p > 0, r N  is a cover 
for W( T )  n I "  with L( C) p when N is sufficiently large. Now 

L s ( r N ) =  1 L(C)"<< 1 / q (  ( f l - l ) ( T + l ) l q ( - S ( T + l )  

cErN I+ N 

where << indicates an inequality with a positive constant factor. Rearranging the sum, 
we get 

ac1 m L5(rN)<<  1 m ( i + l ) ( n - l - s )  1 << m ( ~ + l ) ( n - l - s ) + n - l  << ~ n - ( 7 + 1 ) ( s - n + 1 )  

m = N  / q / = m  m = N  
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Figure 1. 

Hence given E > 0, L"(T,) < E for N sufficiently large, and it follows that inf Ls(T)  = 0, 
whence s>dim W ( 7 ) n I " .  Since s is an arbitrary number greater than n -  
( T - n + 1)/(  T + l ) ,  it follows from the definition that 

dim W ( T ) ,  n I" =dim W(T)  s n - ( T - n  + 1 ) / ( T +  1). 

The complementary inequality is much harder and will be dealt with later. 

7. dim 6 ' ( ~ ) < n n - ( ~ - - n ) / ( ~ + l )  

When T > 2,  the set @( T,  1) is essentially the set of well approximable numbers and 
its dimension was shown to be 2/(7+ 1) by Jarnik (1929, 1931) and Besicovitch (1934) 
(see also Eggleston 1952). Recently the Hausdorff dimension of a set more general 
than @ ( T )  has been determined and using this result it can be shown that 

dim @( 7 )  = n - ( T -  n ) / ( T +  1) 

when T >  n (Bovey and Dodson 1985). However, to keep this paper reponably 
self-contained and because the arguments are of interest, the dimension of W (  T )  will 
be established for n 2 2.  

As the first (and easy) step in the determination of dim @ ( T ) ,  we obtain the 
following upper bound which holds for n 2 1. 

Lemma 7.1. When T > n, 
dim @ ( T )  n - (7- ?I)/( T +  1)  = n - 1 + ( n  + 1 ) / ( ~ +  1). 
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Proof: Let E > 0 and 6 > 0 be given and let t = n - 1 + ( n  + 1)/( T +  1). For each q E Z"  
and m E Z, cover the ( m  - 1)-dimensional resonant hyperplane 

H( q, m )  = {x E R": 1q x - mi= 0) 

in R" with n-dimensional hypercubes of side 81q/-'T+1) in such a way that the vertices 
lie on a lattice of width Iq/-(T+l). Then I "  n H ( q ,  m )  can be covered by << lq l ( r+' ) 'n- ' )  
such cubes (the notation << indicates an inequality with an unspecified constant factor), 
as shown in figure 2. The collection of such cubes r(q, m), say, also forms a covering 
for the neighbourhood or thickened hyperplane 

B(q,  m )  = { X E  R": 14' x-  mi< l q ( - r } .  

Now for each N = 1,2,. . . , the collection 

rN ={U% m ) :  Iml<+/q/, 14/> N )  

covers * ( T )  and the t volume of rN is given by 

for N sufficiently large. Thus for all t >  n - ( T -  n ) / ( 7 + 1 ) ,  there exists a cover of 
*(T) with arbitrarily small t volume and hence 

dim * ( T )  C n - ( 7 -  n ) / ( T +  1). 

Figure 2. 



362 M M Dodson  and J A G Vickers 

8. dim W ( T ) = ~ - ( T - ~ ) / ( T + ~ )  

As is common in the determination of Hausdorff dimension, the complementary 
inequality 

dim I@(,) =dim I@(T,  n )  2 n - (T - n ) / (  T +  1) (8.1) 

( T > n ) ,  is much harder to establish. The methods used in Bovey and Dodson (1985) 
have some features in common with those of Jarnik (1929, 1931) and Besicovitch 
(1934), who first proved the result for n = 1, but also include a 'variance' or 'second 
moment' argument. These and subsequent arguments are somewhat elaborate and rely 
upon the distribution of certain resonant hyperplanes being roughly regular with an 
associated variance not being too large, suggesting a parallel with the notion of 
independence in probability. There is also a similarity with self-similar sets which 
reproduce themselves at certain scales and particularly with 'statistically' self-similar 
sets (Mandelbrot 1983, Falconer 1985). Recently Sullivan (1982) has used the prob- 
abilistic independence of certain sets in I " ,  where n = 1 or 2, to give a new proof of 
Khintchine's approximation theorem (corresponding to n = 1) and a complex version 
when n = 2. There are a number of similarities between Sullivan (1982) and Bovey 
and Dodson (1985), such as some general statistical arguments, including the use of 
independence, which arises in Sullivan from a collection of disjoint spheres and in 
Bovey and Dodson from a special set of hyperplanes; also the flows in Sullivan are 
ergodic and even-mixing as are flows implicit in Bovey and Dodson. When n 2 2, 
some of the arguments in Bovey and Dodson can be simplified and made more 
geometrical, giving the fundamental 'invariance of measure' and 'independence' results 
(8.4) and (8.5) below. These results are sharper than the corresponding ones in Bovey 
and Dodson and lead to sharper mean and second moment results (lemmas 8.1 and 
8.2, respectively). In view of this and of the results of Jarnik and Besicovitch, we shall 
take n 2 2 for this section. 

We start by introducing some additional definitions and notation (recall that T > n ) .  
Let S be any positive number and put 

s = n - ( T -  n ) / ( ~ +  I ) - &  

Suppose for some positive E ,  the countable collection of hypercubes C with L( C )  s 6, 
where 6 is an arbitrary positive number, satisfies 

q r )  = L(c)*  < &. (8.2) 

We will show that no such collection r can cover I@( T,  n )  and hence that the inequality 
(8.1) holds. 

Let N be a sufficiently large positive integer and let 7 satisfy 

O <  77 < min{T- n, ( T +  1)6}. 

Ipil<N 

(8.3) 
Let p denote any vector ( pl, . . . , p . )  in Z" satisfying IpI = p ,  with 

Then 
N < p ,  < 2 N  for i = 2, . . . , n. 
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so that SN is a set of resonant hyperplanes (see Bovey and Dodson 1985) and ISN( is 
the number of hyperplanes in SN and satisfies 

IS,l-cc l - ~ p 1 - 3 x 2 " - 2 x N " + '  
P m  P 

where, as always, m satisfies Im/ < i p l  unless otherwise stated. 
We will show that the hyperplanes H ( p ,  m )  in SN are asymptotically regularly 

distributed and can be used to construct a 'sampling' set T (  N )  = ci/( T )  which can be 
used to show that r cannot cover @ ( T )  (in fact, r fails to cover at least one point in 
a particular subset of ci/( 7)). 

Choose 7 so that 0 < 7 < min{ T - n, ( T +  1)6} and let 
p = p(  N )  = N-"+'i 

so that p + 0 as N + CO. Let ,y = x( -p ,p ,  be the characteristic function of the interval 
( - p ,  p ) .  Then for each p I," X(P * x) dx = 2PPi ' .  

Suppose that Ip - x - ml< p, i.e. x( p - x - m )  = 1 .  Then since N is sufficiently large, for 
any integer m # m', 

Ip x-  m'/ 3 lm - m'/ - / p a  x - m1> 1 - ~-"+ ' i  > p 

i.e. x (  p x - m') = 0. It follows that for each x in I "  

if Ip x - m( < p for some m, (Iml< t p , )  
otherwise. c X(P. x-  m) = 

m 

For each vector v in R" define the function @, : R" + I by 

(D.,(x)=(v.x). 

c x(  P * x - m ) = X A ( X )  

Note also that 

m 

where the set A=@b'(-p, p ) .  When qeZ" ,  the function Qq is periodic and as a 
consequence, when n 3 2 ,  the measure of the inverse image under aq is preserved, i.e. 
for any interval J in I, 

I@;" = IJI (8.4) 
and the map (Dq is 'stochastic' or independent in the sense that for any independent 
4, 4'9 

/ @ ; ' ( J )  n @ ; , ' ( J ' ) I  = I @ ; ' ( J ) ~  I @ ; - ' ( J ' ) I  = I J I  I J ' I .  ( 8 . 5 )  
These results are proved in a more general setting by Sprindiuk (1979, ch I, lemmas 
8 and 9), but the arguments given here are of a more geometric character and require 
only translation invariance rather than linearity. 

We start by proving (8.4) in the case where n = 2 and then consider the more general 
case. Let 2 = 1' be the set of points on which @,(x) vanishes, i.e. 2 = @;'(O), the 
zero set of Qr If we regard Z 2  = (-$, :I2 as the two-dimensional torus T2,  then the line 
x 2 = 0  and the set 2 divide T 2  into strips Si, i = 1 , .  . . , q l ,  each of width l /q l .  Let 
P = [0, p )  and consider the set B = @ i ' ( P ) .  This set consists of the lines making up 
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Z thickened to form strips gi of width p / q l  (see figure 3). Thus each strip Si contains 
a substrip si with the respective areas in the ratio - 

area SI :area Si = l / q ,  : p / q l  = 1 : p. 

1 :area B = area T2:area B = area Si :area ii = 1 : p  

But T 2  is covered by the strips Si, so that 

and thus the area of B is p or 

I@;“ = (PI. 

The translation invariance of Oq ensures that the result remains true, i.e. (8.4) holds, 
for a general interval and not just one of the form [ O , p ) .  The above argument is 
readily generalised to the n-dimensional case by considering the way in which T” is 
divided up into prisms by the zero set 2 of Oq and the plane x3 = . . . = x, = 0. 

We now turn to (8.5) in the case when n = 2. Let 2 be the zero set of Qq and Z’ 
be the zero set of Qq,. Then 2 U 2’ divides T2 into 1q x 9’1 parallelograms ITi, each of 
area 1q x q’1-I (see figure 4). Let P = [0, p )  and P’= [0, p ’ )  and consider the sets 
B = @;’(P) and B’= @;’(P’). These sets are obtained by thickening the lines making 
up 2 and Z’ and taking the parallelograms fii arising from their intersections. Each 
parallelogram IIi contains just one parallelogram fii and elementary geometry shows 
that the areas are in the ratio .. 

area H i  :area IIi = 1 : pp’.  

1 : area B n B‘ = area T’ : area B n B’ = area ni : area ai = 1 : pp’ 

Now the torus T2 is tessellated by the II, so that 

whence the area of B n B’ is pp’ or 

JQ.;’(P) n Q;;(P’) /  = I P I  
Again the translation invariance of (Dq ensures that this result remains true for general 
intervals. 
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c- 

Q Iq, 

Figure 4. 

To establish (8.5) for general n, we first observe that 2 = @;'(O) consists of a family 
of ( n  - 1)-dimensional hyperplanes, each with normal q, and that 2' is a family of 
hyperplanes with normal q' .  Let 

H = { X E  I " :  x = aq+Pq' ,  a, p ER} 

so that H is the 2-plane through the origin 0 of R", spanned by q and 4'. Then @;'(O) 
and @;,'(O) are orthogonal to H and 

vol{@;'(P)n@;,'(P')} =area{@;'(P) n@;,'(P')n H )  

since @;'(P)  n @;,'(P') consists of a prism with base 

a;'( P )  n @is1( P')  n H 

and with height 1 in each complementary dimension. But by the result for n = 2 ,  it 
follows that the area of the base is pp',  so that 

\@; ' (P)  n@;J(P')I = \ P I  IF\. 

The translational invariance of Oq ensures that this result holds for general intervals, 
i.e. that (8.5) holds. 

Now the function v N :  I"  + Z given by 

=E x(p' X -  m, XA(X)  
p m  P 

is the number of hyperplanes H ( p ,  k) in S, within p of x. Define 

PN = I," VN(X) dx 

and 
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We show that the resonant hyperplanes H( p ,  m )  are asymptotically regularly dis- 
tributed in the sense that the variance U" of vN is small, satisfying 

uh s PN. 
First we calculate the mean pN, 

Lemma 8.1. The mean p N  of vN is given by 

P ~ = 2 p e 1 - 2 " N ' .  
P 

ProoJ: By definition 

by (8 .4 ) .  Hence 

pN = 2N-n+V2n-1Nl+(n-11 ( 1  + 0 ( 1 ) )  - 2 " N ' ,  

Next we estimate the second moment of vN. 

Lemma 8.2. 

Proof: Write A = @;'( -p, p ) ,  A' = @;I( -p, p ) .  By definition, 

by (8 .5 ) .  Hence 

[In v % ( x ) d x = p N +  4 p 2  
PfP' 

by (8 .4 )  and so 

< P N + P %  

by lemma 8.1. 

The following result is immediate. 

Corollary 8.2. 

U; S PN. 
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Thus v, is not more spread than a Poisson distribution on the positive reals, since for 
such a process the mean and the variance are equal. 

The set 

say - 1  v, (0) = { X E  I " :  v , ( x )  = O} = z, 
consists of points x which are not near any hyperplane H ( p ,  m )  in S,. The corollary 
implies that the volume lZ,l of Z, is small. 

Lemma 8.3. 

We are now in a position to construct the sampling set T(  N )  by selecting well distributed 
resonant hyperplanes in SN and then thickening them slightly so that the resulting set 
is still a subset of W( T )  n I " .  

Dissect I "  into [ N / (  16p)I" = [2-4N"-qi']" congruent hypercubes H with side 
L ( H )  = [2-4Nn-rl+1]-1 - 16N-'-'-'. Now shrink each H by f about its centre to 
obtain a similar hypercube H'  with L( H ' )  = f L (  H ) .  Suppose there are M hypercubes 
such that for each H (  p ,  m )  in SN the ( n  - 1)-dimensional volume of the intersection 
of H' with H (  p ,  m )  is less than ( L (  H)/d2)"- ' .  Let H" be the result of shrinking such 
a hypercube H '  by f about its centre (see figure 5 )  so that L ( H )  = 4L(H") .  Then every 

H' 
X 

Figure 5. 
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point in H" is at least &H)(1+0(1))  from each H ( p ,  m). But QL(H) ( l+o( l ) )  - 
~ ( p - x - m )  =O.  Thus X E  H" implies vN(x)=O, i.e. XEZ,. It follows that 

Thus 
there are (N /  16p)"( 1 + o( 1))  hypercubes H' whose intersection with H (  p ,  m )  E S, has 
volume at least (L(H)/J2)"- ' .  Pick one such intersection or 'slice' S, say, for each 
such hypercube H ' ,  so that asymptotically there are (N/  16p)" - L( H)-" such slices. 
Let 

1 6 ~ 7 - " - 1  - 
8 -2p/N,  so that when X E H "  and H ( p , m ) E S ,  Ip .x -ml>p  whence - 

M(&( H))" s (Z,( = o( l), so that M = o( L( H)-") = o( N(ni-l-T)n ) = o ( p / N ) " .  

v = V( S )  = {x E c l  H ' :  Ix - yI < n - ' ( 2 ~ ) - ~ - '  for some y in S} 

i.e. V = V( S) is a thickening of S, and let T(  N) be the collection of such V. Then the 
n-dimensional volume 1 T (  N)l of T( N) is given by 

and satisfies 
L(H)-"N- ' - 'L(H)"- '<< IT(N)I<< L(H)-lN-T-'<< N"-?-".  

The importance of the set T ( N )  is that it is sufficiently regular and numerous to 
'measure' the volume of a set. 

Lemma 8.4. Let X be a set in I"  whose boundary is of measure 0. Then 

Ix n T(N)l- 1x1 ' IT(N)I. 

Roo$ Dissect I"  into [N/(16p)]" hypercubes as before and let P be the number 
which lie completely within X and P' the number which meet both X and I"\X (see 
figure6). Then P -  L(H)"SlXIS(P+P')L(H),andsince P ' .  L ( H ) "  =o(l),itfollows 
that 1x1 - Pa L(H)" .  The number of cubes in X which contain a set V from T ( N )  is 
P + o( L( H)) -"  and thus 

( X  n T(  N)( - ( P + o( L( H ) ) - "  - 1 Q( - 1x1 - L( H)-"L(  H)" I T(  N)( - 1x1 
where 

T( N ) I  
is the mean of 1 VI for V in T (  N). 

x2 t rn  41 

Figure 6. 
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When the set X depends on N, i.e. when X = X (  N ) ,  the above proof breaks down 
but the volume can be estimated in the case we are going to need. 

Proof Since 77 < T - n and  N is sufficiently large, 
N-(T+ii < 1 6 ~ - n - i - v  - [ 2 - 4 ~ 1 T n - v ] - 1  = L ( H ) .  

As before, I "  is dissected into [N/(16p)]" cubes with L ( H )  =[N/(16p)]-'. By using 
arguments similar to those in the preceding lemma it can be shown that the number 
of sets V which meet C is << ( L ( C ) / L ( H ) ) "  when L ( C ) >  L ( H ) ;  and is << 1 when 
L ( C ) <  L ( H ) .  Hence by the above 

I C n  T(N)J<< L ( c ) " .  L ( H ) - " .  Iv I+L(C)"- ' .  N - - ( ~ - "  

<< IC1 . 1 T (  N)l + L( C)n-l . N-""'. 

We now apply these estimates to hypercubes C from where L( C )  lies in a suitable 
range. Let N,-,, N, be sufficiently large integers with N,-, < N ,  and define 

R (  s)  = { C E r: N,('+l) < L( C) N;:;+"} 

Then by using lemma 8.5, summing over all cubes in R ( s )  and using (8.1), it can be 
shown that 

lR(s )n  T(N,)I<< ~T(Ns)~{~T(N,-l)~ . N:_;('+')'+ N:-(Tf l )S}  (8.6) 

where the implied constants d o  not depend on Ns-l  or  N, (a more general version of 
(8.6) is proved in Bovey and Dodson (1985)). We now use T ( N )  to construct a set 
which is a subset of $ ( ,  n) but which is not covered by r. 

Let Go = [-f, f]" and define the compact sets G, inductively by 

G, = n T(N,)I\R(s). 

Lemma 8.6. For each s = 1,2, . . . , the integers No, N I ,  . . . , N, can be chosen to increase 
with sufficient rapidity so that 

J = 1  

Proof: Clearly IGo/ = 1 and from the definition of G1, 

I GlI = I T ( N J  - IR( 1) n T (  N1)I 2- IT( m1- K { /  T(N0)I NOP + N ; P ) )  
where K is the implied constant in lemma 8.6 and where p = ( T  + 1)s - 7 > 0 by the 
choice of 77 (8 .3) .  Hence by choosing No and NI sufficiently large, 

IGiIz2-'IT(Ni)I. 

Now 

IGzI = IC1 n T(N2)I - IG1 n T(N2)  n W)I 

IG, n T(N2)I ==; lGl l l~(~2) l  ==2-3/T(N1)IIT(N2)l. 

and by lemma 8.5 we can take N ,  sufficiently large so that 
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Moreover by lemma 8.5, 

\GI  n T ( N 2 )  n R(2)1< K .  IT(N2)I(IT(Nl)INf+ Nf) 

K N ; ~  > PKN;~ > 2-51 T(  N ~ ) I .  

IG2l> 2-417-(~1)/ IT(N2)I 

and we can take N, and N2 sufficiently large so that 

Hence 

and repeated application gives the required result (see Bovey and Dodson (1985) for 
a more general and detailed proof). 

Lemma 8.6 implies that for each s = 1 , 2 , .  . . , the compact set G, is not empty; but by 
construction 

G, = fi Gj Z 0. 
j = l  

Hence by the finite intersection property, G, is not empty. Now each C in r does 
not meet G,, since every C in r is in R (  s) for some s and hence cannot be in G, 2 G,. 
Hence the collection r cannot cover G, and we will show that G,c @ ( T ,  n ) .  

Suppose X E  G,. Then X E  G, fors  = 1 , 2 , .  . . , and hence X E  T ( N , )  for s = 1 , 2 , .  . . . 
Thus for each s = 1,2 ,  . . . , there is a point y in some H ( p ,  m )  E S, with 

I x - y I s  n - 1 ( 2Ns ) -( r+ 1 1  

and therefore, since y E H (  p ,  m ) ,  

l p .  x -  mi=  Ips ( x - y ) I s  n -  IpI Ix-yl  s IpI * (2N,)-('+')< IpI-' 

since lpI < 2Ns. Hence for each x in G,, there are infinitely many ( p ,  m )  in Z"" such 
that 

IP' x-  MI < IP1-T 

and so if x E G,,;hen x E @( T,  n ) ,  i.e. G, c @( 7, n ) .  Because it is not a cover of G,, 
r cannot cover W ( T ,  n )  and it follows from the definition of dimension that 

dim @( 7, n )  3 n - ( T - n ) / (  7 +  1) 

which, together with lemma 7.1, proves the following. 

Theorem 8.7. When T > n, the set 

@(T) = {x E (w": / ( q  - x)/ < IqI-' for infinitely many q in z") 
has Hausdorff dimension 

dim @(T) = n - (7- n ) / ( 7 +  1) 

and when 7 d n, *( 7) has Lebesgue measure 1. 

Boo$ Only the result I @ ( T ) I  = 1 when T S  n has to be proved and since, when 7 s n, 

cl 

where the summation is over all non-zero q in Z", this follows from a general theorem 
of Khintchine type established by Groshev (see Sprindiuk 1979). 
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9. The dimension of W ( T )  

Having obtained the dimension of the set of well approximable forms *( T), it is now 
possible to determine the dimension of W ( T ) .  

First the Hausdorff dimension of the interval ( f , i )  is 1 and that of the Cartesian 
product (a, f) x X is dim(& f) + dim X = 1 + dim X (Bovey and Dodson 1978, Falconer 
1985). Next when B map f: X +  Y satisfies a Lipschitz condition and is onto, then 
dim X 6 dim Y (Falconer 1985, p 10, lemma 1.8). It follows from lemma 4.2 that for 
each positive E ,  

dim W (  7, n )  3 dim T{  (a, f) X $( T + E, n - 1) n In-'} = 1 + dim *( 7 + E, n - 1) 

whence for .r> n - 1, 

7 + E - n + l  = n -  
7+1+E T + l + E  

T + & - n + l  
dim W ( T , n ) > l + n - l -  

Since E is an arbitrary positive number, dim W (  T,  n )  3 n - ( r  - n + 1)/( T + 1) when 
7 > n - 1, and so by 0 6 ,  

T - n + l  
dim W(T, n )  = dim W ( r )  = n -~ (9.1) r + 1  

when 7 > n - 1. When 7 s  n - 1, W (  T,  n )  has full Lebesgue measure; this follows from 
lemma 4.1 when T < n - 1 and 1 W ( n  - 1)( = 1 follows from (10.1). 

10. The dimension of the exceptional sets 

The dimensions of the exceptiona! sets ( T )  and E ( T )  are obtained by a continuity 
argument from the dimensions of W (  T, n):nd W ( T ,  n). By lemma 4.1, given any E > 0, 
i( T )  is trapped between 6'( T+ E) arnd W (  T )  and E (  T) between W (  7 + E )  and W (  7 ) .  

Hence, by (5.1), 

dim @ ( r + E ) s d i m E ( 7 ) s d i m  *(T) 

dim W ( T +  E )  s dim E ( T )  s dim W(.r). 
(10.1) 

Thus by theorem 8.7, n - ( T +  E - n ) / j 7 +  E + 1) s d i y  Z ( T )  s n - ( 7 -  n ) / ( . r+  1) for any 
positive E when T >  n. When T <  n, E ( T )  =R" and I E ( n ) l =  1 (since $l(n)l =O). Hence, 
since E > 0 is arbitrary, 

d i m , ? ? ( ~ ) = d i m  *(T)= { ;--(T-n)/(T+l) 
when r > n 
when T S  n. 

The dimension of E ( T )  is determined similarly. By (10.1) and (9.1), for any e > 0, 
when .r> n - 1. n - ( T +  E - n + 1)/(7+ E + 1) s dim E ( T )  s n - ( T -  n + 1)/(T+ 1) 

Recall that l E ( n - l ) l = l  and E ( T ) = R "  when r < n - 1  ( § 2 ) ,  so that 

[ n"-(7- n +  1) / (7+  1) when T >  n - 1 
w h e n r s n - 1 .  

dim E(T)=dim W ( r ) =  

Since the exceptional sets ,?? and E of frequencies w, ,  . . . , w ,  in iw" are given by 

i =n E =n E ( 7 )  
T 
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respectively, it follows that 

and 

T - n + l  
dim E = lim n --= n - 1. 

T’X r + 1  

Thus the exceptional sets fi and E have Hausdorff codimension 1 in R“. 

11. Conclusion 

Returning to the KAM theory, we recall that the stability implied by very large values 
of T is not significant physically. To prevent arbitrarily small perturbations, the value 
of the exponent T in the exceptional set E ( T )  should be a conveniently small number 
which is still large enough to ensure that the Lebesgue measure of E ( T )  is zero. In 
the case of the autonomous KAM theorem, the exceptional set is chosen to be E (  n + 1 )  
(Arnol’d 1978, p 405). The Hausdoe  dimension of E ( n + l )  is n -2/(n+2),  so that 
for a system with a large number of degrees of freedom, dim E(n + 1) is almost its 
maximal value n. More generally, fixing r =  n+c,  for some positive constant c, 
dim E (  n + c) = n - (c  + 1)/( n + c + 1) which approaches n when n is large compared 
to c. Similar considerations apply to the periodic KAM theorem: dim i ( n + l ) =  
n - l / ( n  +2),  which also approaches n when n is large. These observations are 
important for systems with an infinite number of degrees of freedom and reflect the 
difficulty of avoiding near resonance when the number of frequencies is large. 

It should perhaps be stated again that the fact that a set of frequencies is in E ( T )  
or even E does not imply that the corresponding system does not have a quasi-periodic 
solution. However, it seems probable that the presence of near resonances is likely to 
lead to instabilities and, in fact, this has been shown to be the case in some examples 
(Arnol’d 1964, Brjuno 1970, Siege1 and Moser 1971). Indeed the way it emerges in 
the general setting suggests that the Diophantine approximation condition is really 
required and is not just a technical restriction which could be circumvented using more 
powerful methods. The above results, which show that for a system with a large number 
of degrees of freedom the Hausdorff dimension of E (  n + 1) is very nearly maximal, 
suggest that for such systems the instabilities associated with reasonable perturbations 
(corresponding to small values of T )  might be more prevalent than suspected. 

The KAM theorem shows that under a sufficiently small perturbation, the ‘good’ 
non-resonant tori will persist and remain topologically tori and invariant. For the 
unperturbed Hamiltonian, the volume in phase space of the complementary set consist- 
ing of the everywhere dense set of ‘bad’ almost resonant tori, whose conservation 
cannot be guaranteed by the theorem, is small. When the Hamiltonian is perturbed 
slightly away from an integrable system, the ‘bad’ tori will typically break up into finite 
sets of alternating elliptic and hyperbolic periodic orbits which are surrounded by 
regions known as stochastic layers in which the motion is irregular. For a system with 
only two degrees of freedom, the level set of the energy is three-dimensional and is 
partitioned by the two-dimensional invariant tori, so that the motion is stable despite 
the disintegration of the bad tori. For a system with more than two degrees of freedom, 
the n-dimensional invariant tori no longer partition the (2n - 1)-dimensional energy 



Exceptional sets in KAM theory 373 

surface. The stochastic layers corresponding to different frequencies will intersect to 
form a dense tangled resonance network or ‘web’ covering the whole of the energy 
surface. The stochastic motion within each layer means that for initial conditions on 
this web the system will slowly move along the interconnected stochastic layers over 
the entire energy surface. This important process is called ‘Arnol’d diffusion’ (see 
Abraham and Marsden 1978) and was first shown to occur in a specific example due 
to Arnol’d (1964) who conjectured that the mechanism of this sort of instability is 
generic. Some recent work of Chirikov (1979), Holmes and Marsden (1982) and Vivaldi 
(1984) lends support to this conjecture and they give a criterion involving Melnikov 
integrals for the occurrence of this process. Indeed, Arnol’d diffusion has been observed 
in an experiment involving electrons confined in a magnetic bottle (Chirikov 1979) 
and in various numerical experiments (Lichtenberg and Lieberman 1983). 

At first sight it is somewhat surprising that this effect is observed in real systems 
since it occurs only for very special initial conditions which lie in the exponentially 
narrow stochastic layers. However, the full set of such layers is everywhere dense in 
the phase space and as we have seen above for a system with a large number of degrees 
of freedom the Hausdorff dimension of the set of frequencies corresponding to bad 
tori is very nearly maximal. Thus, even though the set of almost resonant frequencies 
has Lebesgue measure 0, the set is very close to having positive Lebesgue measure. 
The break-up of the bad tori is likely to have qualitatively important effects on a 
sufficiently long timescale. The near-maximal Hausdorff dimension of the frequencies 
of the bad tori suggests that the volume of the corresponding trajectories in phase 
space might be somewhat larger than expected. Although not sufficient to establish 
the existence of Arnol’d diffusion, the relatively large volume of these trajectories 
might explain to some extent why Arnol’d diffusion is observed in real physical systems 
with several degrees of freedom and negligible energy dissipation. The Solar System 
is of this kind and Arnol’d diffusion can account for the Kirkwood gaps in the asteroid 
belt (Brjuno 1970). 

Acknowledgments 

We would like to thank the referees for useful comments which have improved the 
clarity of the paper. 

References 

Abraham R and Marsden J E 1978 Foundations of Mechanics (Reading, MA: Benjamin/Cummings) 
Arnol’d V 1963 Russ. Math. Surveys 18 85-192 
- 1964 Sou. Math. Dokl. 5 581-4 
- 1968 Russ. Math. Suroeys 23 1-433 
- 1978 Mathematics/ Methods ofClassical Mechanics (Engl. transl. Vogtmann K and Weinstein A (Berlin: 

- 1981 Singularity Theory. LMS Lecture Notes Ser. 53 3-45 
- 1983 Geometric Methods in the Theory ofordinary Differential Equations (Engl. transl. Szucs J (Berlin: 

Besicovitch A S 1934 J. London Math. Soc. 9 126-31 
Bovey J D and Dodson M M 1978 Bull. London Math. Soc. 10 213-8 
_. 1985 Acra Arirh. 45 to appear 
Brjuno A D 1970 Math. USSR. Sbornik 12 272-312 
Chirikov B V 1979 Phys. Rep. 52 265-379 

Springer)) 

Springer)) 



374 M M Dodson and J A G Vickers 

Eggleston H G 1952 Proc. London Math. Soc. 54 42-93 
Falconer K J 1985 ?%e Geometry of Fractal Sets (Cambridge: Cambridge University Press) 
Holmes P J and Marsden J E 1982 1. Math. Phys. 23 135-66 
Jarnik V 1929 Math. Sbornik 36 371-82 
- 1931 Math. Z. 33 505-43 
Lichtenberg A J and Lieberman M A 1983 Regular and Srochasric Morion (Berlin: Springer) 
Mandelbrot B B 1983 The Fractal Geometry of Nature (San Francisco: W H Freeman) 
Moser J K 1973 Stable and Random Motions in Dynamical Systems. Ann. Math. Studies No 77 (Princeton: 

Rogers C A 1970 Hausdorf Measures (Cambridge: Cambridge University Press) 
Russman H 1973 Lecture Notes in Physics 38 ed J K Moser (Berlin: Springer) pp 598-624 
Schmidt W M 1969 1. Number 7Ieory 1 139-54 
- 1980 Diophantine Approximation. Lecture Notes in Mathematics 785 (Berlin: Springer) 
Siege1 C L and Moser J K 1971 Lectures on Celesrial Mechanics (Berlin: Springer) 
Sprindiuk V G 1979 Metric Theory ofDiophantine Approximations (Engl. transl. Silverman R A (New York: 

Sternberg S 1969 Celestial Mechanics Part I 1  (New York: Benjamin) 
Sullivan D 1982 Acta Math. 149 215-37 
Vickers J A G and Dodson M M 1985 in preparation 
Vivaldi F 1984 Rev. Mod. Phys. 56 737-76 
Zehnder E 1977 Geometry and Topology ed J Palis and M do Carmo (Lecture Notes in Mathematics 597) 

Princeton University Press) 

Wiley)) 

(Berlin: Springer) pp 855-66 


